A non-academic perspective on the future of lithium-based batteries.

The role of third-party validation and technology assessment.

James T. Frith

Principal Volta Energy Technologies

Ulderico Ulissi

Advisor Sphere Energy SAS

Matthew J. Lacey

Senior Engineer Scania

Lukas Lutz

Co-founder Sphere Energy SAS

Welcome!

Let's start with a quick temperature check of the (impressive crowd!)

Industrials: What is your biggest challenge with battery technology?

Academics: What is your biggest challenge when developing new

battery technology?

The agenda for today

Theory vs. reality

Dr. Matthew Lacey

Lacey

Innovation – Lab to market

Dr. Uldercio Ulissi

Dr. Uldercio

Dr. James Frith

Dr. James Frith

Why you need to

understand

markets

A proposed solution

Dr. Lukas Lutz

Dr. Lukas Lutz

The agenda for today

Theory vs. reality

Dr. Matthew Lacey

Innovation – Lab

to market

Dr. Uldercio Ulissi

Why you need to understand markets

Dr. James Frith

Dr. James Frith

Dr. Lukas Lutz

Dr. Lukas Lutz

A proposed

solution

Dr. Uldercio Lacey

4 | Sphere-Energy Webinar | a non-academic perspective on the future of Li-lon batteries

Theory vs. Reality

Dr. Matthew Lacey

Lithium batteries – State of the art

Current state-of-the-art (cell level)

based on publicly available specifications

Cylindrical
 Pouch
 Prismatic

Key Performance Indicators (KPIs), e.g., for an EV

- Range (gravimetric and volumetric energy)
- Power capability (charge/discharge, pulse, IR)
- Efficiency (energy, coulombic)
- Lifetime (and available State-of-Charge)
- Cost per energy (\$/kWh)
- Operating temperature and pressure
- Safety at the <u>system level</u>
- Overall <u>system cost</u>, including EOL
- CO_{2e} emission to produce a pack (CO_{2e}/kWh)
 - with carbon taxes, $CO_{2e} = $$

Lithium-ion cells are complex devices, and each component will generally influence each KPI

Other considerations (incl. socio-economic)

- Manufacturing, scalability
- · Supply chain, geopolitical issues
- Capital investments required, "ESG" risks
- Thermodynamic versus technological limit

What's wrong with these sentences...?

one of the most desirable aspects of future energy technologies. Beyond Li-ion batteries, Li–S is of great relevance to follow as it adapts to the specificity of each application. It is among the most suitable elements for high-performance energy storage systems, given its high theoretical capacity (1674 mA h g⁻¹) and energy density (2600 W h kg⁻¹) relative to Li-ion batteries (300 W h kg⁻¹).

LiMnO₂) [2]. Beyond the limitations of Li-ion batteries (typically around 150–200 Wh kg⁻¹), lithium-sulfur (Li-S) system is promising owing to its low cost and high theoretical energy density (\sim 2567 Wh kg⁻¹), safety, a wide temperature range of

to clean and sustainable energies nowadays.^[1] As candidates for storing electric energy,^[2] Liion batteries have been limited by their theoretical energy densities (\sim 350 Wh kg⁻¹) that made it far from meeting the real demands.^[3]

In comparison Li- O_2 battery has an ultrahigh theoretical specific energy density (about 3500 Wh kg⁻¹) and been expected to be used for next-generation rechargeable batteries. If Li

From battery theory to battery pack

From battery theory to battery pack

Food for thought

- i. Inappropriate comparisons of apples to oranges are very common (e.g. theory to cell-level metrics)
- ii. Extrapolating from one scale (or chemistry) to another is tempting, but **will be misleading** if the bottlenecks change
- iii. Manufacturers have exploited the better thermal stability of LFP to produce highly volumeefficient packs, significantly improving energy density without much innovation in underlying chemistry
- iv. Up to now, automotive industry has largely sought energy density improvement via next-gen chemistries (Si anode, solid state etc), with market introduction not expected until later this decade

The agenda for today

Theory vs. reality

Dr. Matthew Lacey

Innovation – Lab to market

Dr. Uldercio Ulissi

Why you need to understand markets

Dr. James Frith

Dr. James Frith

A proposed

solution

Dr. Lukas Lutz

Dr. Lukas Lutz

11 | Sphere-Energy Webinar | a non-academic perspective on the future of Li-Ion batteries

Innovation – Lab to market

Dr. Ulderico Ulissi

From the lab to the "GWh"-factory

- Technology Readiness Levels can be used to assess the maturity of a technology
- For EV market adoption, a battery and its sub-components need to be mass-manufactured

What is the order of magnitude?

One "2032" coin-cell (mWh)

- 1.6cm Ø positive electrode
- Positive electrode active material loading: 4mg/cm²
- 8mg of "cathode active material" (CAM)

One 75 kWh Tesla 3 pack

How much more "cathode active material" is required to manufacture one pack?

One 2032 coin-cell can require 8mg of "CAM"

How much more is contained in a Tesla 3 Pack (75 kWh)?

One 2032 coin-cell can require 8mg of "CAM"

How much more is contained in a Tesla 3 Pack (75 kWh)?

Answer:

14,000,000x (ca. 110kg)

One "10 GWh/y" battery pack manufacturing plant could produce enough batteries for ca. 130,000 Tesla 3 per year. It would require **at least** 14,300 tonnes of "cathode".

Umicore EU cathode active material plant in Nysa, Poland, is expected to reach a capacity of 40 GWh/y in 2024.

In 2022, global EV sales reached 10M (with an average pack size of 40-60 kWh)

Understanding complex supply chains is crucial

Each step can require a diverse set of expertise

 Operating a "cathode" (chemical) plant is radically different from operating a "cell" manufacturing plant (high-precision, high automation)

Time-to-market varies

Even if we consider that a company is scaling up a mature technology and has all the required know-how, setting up a manufacturing plant can take several years

- CapEx: Capital expenditures (when a company spends money)
- SOP: Start-of-Production (when a company starts manufacturing)

The agenda for today

Theory vs. reality

Dr. Matthew Lacey

Innovation – Lab to market

Dr. Uldercio Ulissi

Dr. Uldercio Uliss

Why you need to understand markets

Dr. James Frith

Dr. James Frith

A proposed solution

Dr. Lukas Lutz

Dr. Lukas Lutz

Why you need to understand markets

Dr. James Frith

Technology roadmaps are misleading

- Industry should be actively helping academia to focus on the most beneficial lines of research
- The best guidance industry provides on technology development is its technology roadmaps
- New entrants to the field of battery research may misinterpret key takeaways
- Industry wants more energy density, but why?

These only tell you about one key metrics

Impact of cathode choice on performance

- These roadmaps usually only show gravimetric energy, but volumetric is often more important and difficult to
 extrapolate from "materials" or even "gravimetric" cell data.
- They also suggest that only one or maybe two types of technology can achieve this performance. volumetric
 is often more important

Metrics need to be translated into device performance

Metrics need to be translated into device performance

- Even when they say it is not about the money.... it is all about the money.
- Technological advances are generally only adopted if they are lower-cost than the incumbent technology or have a viable cost-down trajectory.

The industry needs to be reactionary

- Chinese subsidies varied depending on the battery pack size, energy density and vehicle range.
- In 2019, subsidies were slashed from a maximum of \$6,600 to ~\$3,700.
- The percentage indicates the maximum subsidy amount EVs with this performance can receive.

The industry needs to be reactionary

Chinese EV subsidy

- In 2019, China's subsidy regime was tightened, meaning EVs with a battery pack of less than 120Wh/kg, would get no subsidy.
- Even high energy density packs received a lower subsidy on a \$ basis, as the total subsidy level was reduced
 as well as the subsidy multiplier.

Small changes can have big impacts

Pack level energy density, Wh/kg

- At the time, commercial LFP packs had a maximum energy density of ~120Wh/kg, so were not eligible for any subsidy.
- Theoretically, pack energy density could be increased up to ~140Wh/kg

Small changes can have big impacts

- The introduction of LFP CTP designs resulted in LFP packs with >120Wh/kg.
- With 80% of the subsidy available, LFP packs were ~\$800 cheaper than highnickel packs, for a 70kWh pack.
- This contributed to the resurgence of LFP in China but was driven by industry looking at the economics.

The agenda for today

Theory vs. reality

Dr. Matthew Lacey

Dr. Uldercio Uliss

Innovation – Lab to market

Dr. Uldercio Ulissi

Why you need to understand markets

Dr. James Frith

Dr. James Frith

A proposed solution

Dr. Lukas Lutz

Dr. Lukas Lutz

A proposed solution – Technology Assessments

Dr. Lukas Lutz

The entire value chain is dependant on high quality data – and we are lacking that!

Step 1: Approaching the battery field with the right mindset Separating hype from facts

Besides all the excitement for a sustainable future, lets be realistic about our expectations!

Step 2: Understanding Trade-offs

There is no silver bullet - it's always a trade-off

Innovation is needed to measure these trade-offs

Step 3: Comprehensive performance testing of new innovations

Key Performance Indicator (KPI)	Relevant Unit	Priority (EV)	Priority (ESS)	Priority (Power Tool)
Specific Energy	Wh/kg			
Energy Density	Wh/L			
Power Capability (Discharge)	W, C-rate			
Power Capability (Charge)	W, C-rate			
Cost	\$/kWh			
Cycle life and lifetime	Cycle n., years			
Safety	Std. testing			
End-of-Life cost, sustainability	\$/(kWh CO _{2e}), Rec. content			

Sphere's contribution

Standardized data and rational decision making along the battery value chain.

Questions?